Wednesday 25 June 2014

Hawaii, Aloha Flight 243, a Boeing 737, an upper part of the plane's cabin area rips off in mid-flight. Metal fatigue was the cause of the failure. 

"On April 28, 1988, at 1346, a Boeing 737-200, N73711, operated by Aloha Airlines Inc., as flight 243, experienced an explosive decompression and structural failure at 24,000 feet, while en route from Hilo, to Honolulu, Hawaii. Approximately 18 feet of the cabin skin and structure aft of the cabin entrance door and above the passenger floorline separated from the airplane during flight. There were 89 passengers and 6 crewmembers on board. One flight attendant was swept overboard during the decompression and is presumed to have been fatally injured; 7 passengers and 1 flight attendant received serious injuries. The flightcrew performed an emergency descent and landing at Kahului Airport on the Island of Maui."
                                                fatigue failure        

               It has been recognized that a metal subjected to a repetitive or fluctuating stress will fail at a stress much lower than that required to cause failure on a single application of load. Failures occurring under conditions of dynamic loading are called fatigue failures.   Fatigue Failure 
Fatigue failure is characterized by three stages :
* Crack Initiation   * Crack Propagation * FinalFracture    
         This long term fatigue crack in a high quality component took a considerable time to nucleate from a machining mark between the spider arms on this highly stressed surface. However once initiated propagation was rapid and accelerating as shown in the increased spacing of the 'beach marks' on the surface caused by the advancing fatigue crack. 
   AA7076-T Specimins Before & After Testing. Photographs of the surfaces of AA7076-T6 specimens before and after testing are shown above.

Sunday 22 June 2014


fatigue failure on engine skin qantas airlines A380









different cycles of failure illustrated by graphical representation
CHARACTERISTICS OF FATIGUE
 ----------------------------------------
  • In metal alloys, when there are no macroscopic or microscopic discontinuities, the process starts with dislocation movements, which eventually form persistent slip bands that become the nucleus of short cracks.
  • Macroscopic and microscopic discontinuities as well as component design features which cause stress concentrations (holes, keyways, sharp changes of direction etc.) are common locations at which the fatigue process begins.
  • Fatigue is a process that has a degree of randomness (stochastic), often showing considerable scatter even in well controlled environments.
  • Fatigue is usually associated with tensile stresses but fatigue cracks have been reported due to compressive loads.[7]
  • The greater the applied stress range, the shorter the life.
  • Fatigue life scatter tends to increase for longer fatigue lives.
  • Damage is cumulative. Materials do not recover when rested.
  • Fatigue life is influenced by a variety of factors, such as temperaturesurface finish, metallurgical microstructure, presence of oxidizing or inert chemicals, residual stresses, scuffing contact (fretting), etc.
  • Some materials (e.g., some steel and titanium alloys) exhibit a theoretical fatigue limit below which continued loading does not lead to fatigue failure.
  • In recent years, researchers (see, for example, the work of Bathias, Murakami, and Stanzl-Tschegg) have found that failures can occur below the theoretical fatigue limit at very high fatigue lives (109 to 1010 cycles). An ultrasonic resonance technique is used in these experiments with frequencies around 10–20 kHz.[citation needed]
  • High cycle fatigue strength (about 104 to 108 cycles) can be described by stress-based parameters. A load-controlled servo-hydraulic test rig is commonly used in these tests, with frequencies of around 20–50 Hz. Other sorts of machines—like resonant magnetic machines—can also be used, to achieve frequencies up to 250 Hz.
  • Low cycle fatigue (loading that typically causes failure in less than 104 cycles) is associated with localized plastic behavior in metals; thus, a strain-based parameter should be used for fatigue life prediction in metals. Testing is conducted with constant strain amplitudes typically at 0.01–5 Hz.
In materials sciencefatigue is the weakening of a material caused by repeatedly applied loads. It is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values that cause such damage may be much less than the strength of the material typically quoted as the ultimate tensile stress limit, or the yield stress limit.
Fatigue occurs when a material is subjected to repeated loading and unloading. If the loads are above a certain threshold, microscopic cracks will begin to form at the stress concentrators such as the surface, persistent slip bands (PSBs), and grain interfaces.[1] Eventually a crack will reach a critical size, the crack will propagate suddenly, and the structure will fracture. The shape of the structure will significantly affect the fatigue life; square holes or sharp corners will lead to elevated local stresses where fatigue cracks can initiate. Round holes and smooth transitions or fillets will therefore increase the fatigue strength of the structure.